Advanced Selectively Gas Permeable Anode Flow Field Design for Removal of Carbon Dioxide in a Direct Formic Acid Fuel Cell
نویسندگان
چکیده
Direct formic acid fuel cells (DFAFCs) are electrochemical energy conversion devices well suited to power portable electronics, if researchers can harness their high theoretical efficiencies and address durability issues. To improve DFAFC efficiency, the mass transport of formic acid to the anode catalyst layer must be improved. Conventional serpentine anode flow field designs limit CO2 product removal through a single flow field channel hindered by two-phase flow. Presented herein is an advanced electrically conductive, selectively gas permeable anode flow field (SGPFF) design that allows for efficient removal of CO2 perpendicular to the active area near the location where it is formed in the catalyst layer. The anode plate design consists of two mating flow fields separated by semi-permeable separator to allow diffusive transport of CO2. Herein, performance differences between a conventional liquid-fed flow field and an advanced SGPFF design are examined. Polarization curves revealed a 10% increase in performance of the SGPFF with confirmation of CO2 removal within the gaseous side. A potential hold test at 0.3 V showed that the SGPFF sustained power generation for 9.5 times longer than that of the conventional anode flow field design in a dead-ended configuration, demonstrating the fixture’s potential for sustained power generation.
منابع مشابه
Passive direct formic acid microfabricated fuel cells
This paper reports on microscale silicon-based direct formic acid fuel cells (Si-DFAFCs) in which the fuel and the oxidant are supplied to the electrodes in a passive manner. Passive delivery of fuel and oxidant eliminates the need for ancillary components and associated parasitic losses. In this Si-DFAFC, an aqueous solution of formic acid is in direct contact with a Pdor Pt-based anode and a ...
متن کاملNanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes.
Shape- and size-controlled supported metal and intermetallic nanocrystallites are of increasing interest because of their catalytic and electrocatalytic properties. In particular, intermetallics PtX (X = Bi, Pb, Pd, Ru) are very attractive because of their high activity as fuel-cell anode catalysts for formic acid or methanol oxidation. These are normally synthesized using high-temperature tech...
متن کاملExperimental Study on a 1000W Dead-End H2/O2 PEM Fuel Cell Stack with Cascade Type for Improving Fuel Utilization
Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels might cause a local fuel starvation degrading the performance and durability of PEMFCs. In this study, a brand new design for a polymer electrolyte membrane...
متن کاملAir-Breathing Membraneless Laminar Flow-Based Fuel Cell with Flow- Through Anode
This paper describes a detailed characterization of laminar flow-based fuel cell (LFFC) with air-breathing cathode for performance (fuel utilization and power density). The effect of flow-over and flow-through anode architectures, as well as operating conditions such as different fuel flow rates and concentrations on the performance of LFFCs was investigated. Formic acid with concentrations of ...
متن کاملLattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell
In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...
متن کامل